Exploring Qualitative Displays and Interfaces

Abstract
Much of how we construct meaning in the real world is qualitative rather than quantitative. We think and act in response to, and in dialogue with, qualities of phenomena, and relationships between them. Yet, quantification has become a default mode for information display, and for interfaces supporting decision-making and behaviour change. There are more opportunities within HCI for qualitative displays and interfaces, for information presentation, and an aid to help people explore their own thinking and relationships with ideas. Here we attempt one dimension of a tentative classification to support projects exploring opportunities for qualitative displays within design.

Author Keywords
Interaction design; Qualitative interfaces and displays; Analog computing; Understanding.

ACM Classification Keywords
H.5.m. Information interfaces and presentation (e.g., HCI): Miscellaneous.

Introduction
Outside of the digital, we largely live and think and act and feel in response to, and in dialogue with, the perceived qualities of people, things and phenomena, and the relationships between them, rather than their
A human face is a qualitative interface, perhaps the earliest we encounter [e.g. 40] along with the voice. We learn to read and interpret emotions in others’ expressions, to recognize commonalities and differences across people, to make inferences about internal and external factors affecting the person, and monitor the effects we or others are having on that person. We understand that the face and voice and our ability to read them are abstractions, interpretations, not perfect knowledge, but a model which enables us to make decisions in conjunction with our reading of our own emotions. In a sense, the whole world, as we perceive it, is a very complex qualitative interface. The most accurate model of a phenomenon is the phenomenon itself, but it is only useful to us to the extent we can understand what we are observing, detect the patterns we need to, and recognize that we are constructing the ‘reality’ we perceive. We are always creating a model [14] and that model is necessarily not reality itself; all displays of information are constructed through responding to or creating these qualities. ‘Displays’ are not necessarily solely visual—obvious to say, perhaps, but not always made explicit. Before exploring some examples, we will look at some theoretical issues. The terms ‘qualitative interface’ or ‘qualitative display’ are not commonly used outside of some introductory human factors textbooks, but forms of interface along these lines are found in lots of projects at CHI, TEI, DIS, Ubicomp and other venues, without authors explicitly drawing our attention to the concept—it is perhaps just too obvious and too broad to merit specific comment in HCI and interaction design research. But, assuming the idea does have value, what are some characteristics?

A typical form of quantitative interface: a Fitbit’s display of number of steps taken.

The Emulsion activity tracker, by Norwegian design studio Skrekkøgle, contains two immiscible liquids. Movement splits the colored liquid into smaller drops, making patterns (Photo used with permission of Skrekkøgle).

Leaves blowing around can be thought of as a form of qualitative display for the wind.

What could qualitative displays and interfaces be?
Here we define a qualitative display as being a way in which information is presented primarily through representing qualities of phenomena; a qualitative interface enables people to interact with a system through responding to or creating these qualities. 'Displays' are not necessarily solely visual—obvious to say, perhaps, but not always made explicit. Before exploring some examples, we will look at some theoretical issues. The terms 'qualitative interface' or 'qualitative display' are not commonly used outside of some introductory human factors textbooks, but forms of interface along these lines are found in lots of projects at CHI, TEI, DIS, Ubicomp and other venues, without authors explicitly drawing our attention to the concept—it is perhaps just too obvious and too broad to merit specific comment in HCI and interaction design research. But, assuming the idea does have value, what are some characteristics?

A typical form of quantitative interface: a Fitbit’s display of number of steps taken.

The Emulsion activity tracker, by Norwegian design studio Skrekkøgle, contains two immiscible liquids. Movement splits the colored liquid into smaller drops, making patterns (Photo used with permission of Skrekkøgle).

Leaves blowing around can be thought of as a form of qualitative display for the wind.
than a numerical display.
more sense of the wind's
Figure
Image
the breeze.
around a lamp post flapping in
when we watch this scarf tied
the feel of the wind on ourselves
Figure
Image
5
4
Figure
5
4
5
: A windsock gives us
: It's easy to imagine
world become salient only when we need to deal with
much the same
do not
complexity without attenuating variety
levels are representations of a simplified model of phenomena
in the world. Levels of indexicality [32], drawing on
Peircean semiology, are relevant here, addressing the
“causal distance” between the phenomenon and how it
is displayed. One advantage of interfaces seeking to
provide a qualitative display is that they have the
potential to enable the preservation of at least some of
the complexity of real phenomena—representing
complexity without attenuating variety [2]—even if we
do not pay attention to it until we actually need to, in
much the same way as certain phenomena in the real
world become salient only when we need to deal with
them. Looking out of the window or opening the door to
see and feel what the weather is like outside
presents us with complex phenomena, but we are able
to interpret what actions we need to take, in a more
experimentally salient way than looking at some
numbers on a weather app. The feel of the wind on our
skin, or watching the wind affect the environment,
gives us a better sense of whether we need a scarf or
cloth than knowing the quantitative value of the wind
speed and direction (Figures 3, 4 and 5). We can see,
hear and feel not just wind speed and direction, but
other qualities of it—is it continuous? in short gusts?
damp, dry? Qualitative displays could enable us to learn
to recognize patterns in the world (and in data sets),
and the characteristics of state changes, similarly to
benefits identified in sonification research [35]. We
should consider that ‘qualitative’ does not simply imply
the absence of numbers. The examples we use in this
paper might involve elements that could easily be
quantified (rain drops, ink in a pen) but are given
meaning through their display in a way that
emphasises a quality or characteristic of the
phenomenon. We recognise that this is potentially an
ambiguous area, and are open to evolving the concept.
A spectrum of one dimension of qualitative displays: directness of connection
Table 1 shows a tentative spectrum of one dimension of
qualitative displays, relating phenomena to the display
in terms of how directly they are connected. Levels 0–1
involve direct use of a real-world phenomenon in the
display; from about Level 2 up to Level 5, they involve
increasing degrees of translation or transduction of the
phenomena. This parallels ideas in indexical
visualisation [32] and embedded data representation
[41] in terms of ‘situatedness’ or causal distance to
phenomena. Boundaries between levels here are
dependent on observers’ interpretations of what is
signified (whether an effect is accidental or deliberate is
a common question in design (teleonomy [25])).
Nevertheless, this spectrum permits a classification of
some examples (Figures 6 and 7) and is being applied
by the authors in undergraduate design studio projects.
We note the absence of screen-based examples: this is
not intentional, and we welcome adding relevant
elements. There are many intersecting research areas
we aim to explore; in current HCI research, the most
relevant are data physicalisation, embedded data
representation, tangible interaction, sonification, and
glanceable displays. The work of Yvonne Jansen,
Pierre Dragicevic and others [20] in data physicalisation,
including compilation of examples
(http://dataphys.org/list), and embedded data
representation [41], provides us with many instances of
qualitative display, mostly at what we are calling Levels
2–5 (Table 1); likewise, development of ubiquitous
computing, tangible interaction and tangible user
interfaces [39, 18, 17] and Hiroshi Ishii’s subsequent
vision of tangible bits [19] offers a huge set of projects,
many of which provide qualitative interfaces for data or
system interaction (usually at Levels 4–5; Table 1).
A spectrum of qualitative displays

Relating phenomena to the display in terms of how directly they are connected:

Level 0: The phenomenon itself ‘creates’ the display directly

Level 1: The display is an ‘accidental’ side-effect of the phenomenon

Level 2: The side-effect is ‘incorporated’ into a display that gives it meaning

Level 3: The display is a designed side-effect of the phenomenon

Level 4: Some minor processing of the phenomenon creates the display

Level 5: Major processing of the phenomenon creates the display

Figure 6: Some examples of displays from Levels 0, 1 and 2. **Level 0:** The pattern of raindrops hitting a translucent umbrella—frequency, coverage, and sound—directly creates a ‘rain display’ for the user, providing insight into the current state and enabling decisions about whether the umbrella is still needed; City lights create a display showing the shape of the city’s districts and indicator of population density; Water trapped in a train carriage window moves as the train accelerates, creating a dynamic display of the train’s motion; A transparent pen is a physical progress bar for the amount of ink remaining—it could be quantified, but it is perhaps the quality of being not-yet-run-out which matters to the user. **Level 1:** A worn patch on a map accidentally provides a display of ‘you are here’; Use marks [5] from previous users demonstrate how to use a swipe-card for entry to a building; A spoon worn through decades of use is an accidental display of the way in which it has been used [31]; Footprints in the snow ‘accidentally’ provide a display of previous walkers’ paths. **Level 2:** ‘This Color For Best Taste’ label gives ‘meaning’ to the colour of a mango’s skin for the consumer (Photo used with permission of Reddit user /u/cwm2355); Writing ‘Clean Me’ or other messages in dust on a car gives meaning to the dusty property; Admiral Robert Fitzroy’s Storm Glass, as used on the voyage of the Beagle (1831–6), incorporates crystals whose changing appearance was believed to enable weather forecasting (Photo: ReneBNRW, Wikimedia Commons, public domain dedication); George Merryweather’s Tempest Prognosticator (1851[30]) incorporates “a jury of philosophical councillors”, 12 leeches whose movement on detecting an approaching storm causes a bell to ring (Photo: Badobadop, Wikimedia Commons, CC-BY-SA).
Figure 7: Some examples of displays from Levels 3, 4 and 5. **Level 3:** IceAlert is designed so that freezing temperatures cause the blue reflectors to rotate to become visible; A ‘participatory bar chart’ by Dan Lockton along the lines of [22, 33, 16], designed so that ‘voting’ increases the visible height of the bar, though the votes are not numbered; A non-numerical weighing scale by Chang Hee Lee designed so liquid trapped under glass changes shape; Toilet stall door lock designed so display rotates from ‘Vacant’ to ‘Engaged’—the position of the lock itself gives us a display of actionable information. **Level 4:** Chronocyclegraphs (1917) by Frank and Lillian Gilbreth, tracing manual workers’ movements [10] (Photo from [15], Archive.org, out of copyright); Live Wire (Dangling String) by Natalie Jeremijenko (1995)[39] moved a wire in proportion to local network traffic; Melbourne Mussel Choir, also by Natalie Jeremijenko with Carbon Arts [6] uses mussels with Hall effect sensors to translate the opening and closing of their shells into music; Availabot (2006), by Schulze & Webb, later BERG [3], is a USB puppet which "stands to attention when your chat buddy comes online". **Level 5:** Powerchord by Dan Lockton [29] provides real-time sonification of electricity use, translating it into birdsong or other ambient sound; Inmaterials: Ghost in the Field by Timo Arnall [1] visualizes “the three-dimensional physical space in which an RFID tag and a reader can interact with each other”; Ritual Machine 2 by the Family Rituals 2.0 project [23] uses patterns on a flip-dot display to visualize the countdown to a shared event for two people; Tempescope by Ken Kawamoto [21] visualizes weather conditions elsewhere in the world through re-creating them in a tabletop display (Photo used from Tempescope Press Kit).
Sonification [35] and glanceable displays [e.g. 9, 34] also offer us diverse sets of examples often using non-numerical representation, also largely at levels 4–5. As noted earlier, qualitative does not just mean non-quantitative, and the boundaries may be blurred: if a sonification directly maps numerical values to tones, is it much different to an unlabelled line chart? Or are sparklines [37], for example, a way of turning quantitative data into a form of qualitative presentation? Even with a quantitative display, how a person interprets it may have a qualitative dimension: Figure 8 shows an electricity monitor used by a study participant [28] who accidentally set it to display kg CO$_2$/day equivalent; this "meant nothing" to her but she interpreted the display such that ">1" meant "expensive". ‘Annotations’ of values as users construct their own meaning [11] may fit here; the aim must, however, be to avoid the kind of reductive ‘qualitative’ nature of a limited set of labels [13].

Figure 9: An example of MONIAC, the Phillips Machine, at the Reserve Bank of New Zealand (Photo by Kaihsu Tai, Wikimedia Commons, public domain dedication).

Analog and metaphor are important here, and the almost-forgotten field of Analogue Computing offers us an intriguing perspective. By “build[ing] models that created a mapping between two physical phenomena” [7], some analogue computers effectively operated as ‘direct’ displays of an analogue of the ‘original’ phenomenon—a kind of meta-level 2 type qualitative display, with devices such as the 1949 Phillips Machine [4] (Figure 9), which performed operations on flows of coloured water to model the economy of a country, enabling an interactive visualization of a system in operation as it operates (there are parallels with Bret Victor and Nicky Case’s work on explorable explanations [38, 8], and the development of visual programming languages).

Other areas of pertinent research and inspiration, are synaesthesia and mental imagery: sensory overlaps, fusions and mappings offer a fertile field for exploring qualitative displays of phenomena.

Conclusion: What use is all of this?
We are interested in using qualitative displays and interfaces for supporting decision-making, behaviour change and new practices through enabling new forms of understanding—as an aid to help people explore their own and each other’s thinking, and specifically to help people understand their relationships and agency with the systems around them [26]. Projects using qualitative displays are unlikely simply to be de-quantified ‘conversion’ of existing numerical displays; instead, the aim will be to make use of the approach to represent and translate phenomena appropriately, in ways which enable users to construct meaning and afford new ways of understanding, enabling nuance and avoiding reductiveness. The spectrum of the ‘directness’ dimension introduced here provides a possible starting point for this work, by giving a framework for analysing examples and suggesting ways of handling phenomena to be displayed, and is currently being used by the authors to brief an undergraduate design studio project on materialising environmental phenomena to reveal hidden relationships. We welcome the opportunity to learn from the CHI community to inform our future explorations of this area.

Acknowledgements
Thanks to Dr Delfina Fantini van Ditmar, Dr Laura Ferrarello, Flora Bowden, Gyorgyi Galik, Stacie Rohrbach, Ross Atkin, Shruti Grover, Veronica Ranner and Dixon Lo for discussions formulating some of these ideas was explored, and to the reviewers. Unless otherwise noted, photos are by the authors.
References

